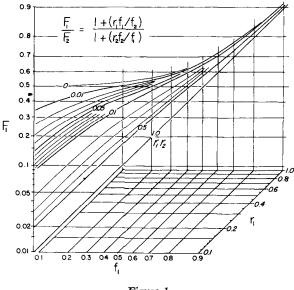
3. Rogovin, S. P., R. F. Anderson, and M. C. Cadmus, J. Biochem. Microbiol. Technol. Eng., 3, 51 (1961).

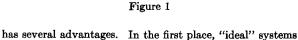
4. Wolff, I. A., H. A. Davis, J. E. Cluskey, L. J. Gundrum, and C. E. Rist, *Ind. Eng. Chem.*, 43, 915 (1951).

> PAUL R. WATSON ALLENE JEANES CARL E. RIST

Northern Regional Research Laboratory Agricultural Research Service U. S. Department of Agriculture Peoria, Illinois

Received July 21, 1961


Graphical Presentation of Copolymer Composition


The relationship between copolymer composition and monomer composition is often shown in graphic form by a plot of F_1 versus f_1 , where F_1 is the mole fraction of monomer 1 in the copolymer being formed at the instant when f_1 is the mole fraction of monomer 1 in the unconverted monomer. In terms of relative reactivities,

$$\frac{F_1}{F_2} = \left(1 + \frac{r_1 f_1}{f_2}\right) / \left(1 + \frac{r_2 f_2}{f_1}\right) \text{ or } Y = r_1 X \frac{(1 + r_1 X)}{(r_1 r_2 + r_1 X)}$$

where $Y = F_1/(1 - F_1)$, $X = f_1/(1 - f_1)$, and r_1 and r_2 = relative reactivities.¹

Usually the compositions are plotted as F_1 against f_1 on arithmetic coordinates similar to x,y diagrams for vaporliquid equilibria. However, a diagram of log Y versus log X

 $(r_1r_2 = 1)$ plot as straight lines with a slope of 1. Even systems with $r_1r_2 \neq 1$ show much less curvature and there-

fore require fewer calculated points to estimate completely.

Moreover, since r_i and X appear together, a plot of log Y

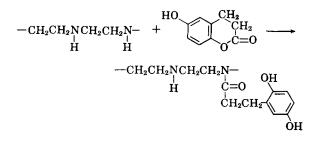
versus log X (when $r_1 = 1$) is changed (from that when $r_1 \neq 1$) merely by adding log r_1 to the abscissa.

In the second place, the log X, log Y diagram can be used as a graphic solution for F_1 as a function of f_1 , r_1 , and r_2 . In Figure 1, the abscissa and ordinate are labeled f_1 and F_1 although log X and log Y are actually plotted. The shifting of the f_1 axis is done graphically by a logarithmic scale of r_1 . Example: Copolymer composition (F_1) desired when $f_1 =$ 0.4 for vinyl acetate (monomer 1) and vinyl chloride (monomer 2); $r_1 = 0.23$, $r_1r_2 = 0.39$. (a) Follow f_1 (at bottom of figure) to intersection with $r_1 = 0.23$. (b) Move vertically to line for $r_1r_2 = 0.39$, read $F_1 = 0.24$.

Reference

1. Flory, P. J., *Principles of Polymer Chemistry*, Cornell Univ. Press, Ithaca, New York, 1953, p. 180.

F. RODRIGUEZ


Geer Rubber and Plastics Laboratory Cornell University Ithaca, New York

Received February 27, 1961

A Convenient Preparation of a Hydroquinone Redox Polymer

Many types of polymers have been described in the literature known as either redox polymers, electron-exchange polymers, or nondiffusible reducing agents. Examples of these are polyvinyl hydroquinone,^{1,2} copolymers of vinyl hydroquinone,³ polyvinyl gentisal,³ polyacrylylascorbic acid,³ and poly-3-(2,5-dihydroxyphenyl)propylene oxide.⁴

Recently we have had occasion to prepare polymers containing the monosubstituted hydroquinone structure, linked by a chemical bond stable to concentrated alkali. Most of the polymers listed above are tedious to prepare, and we now wish to report a convenient synthesis of polymeric hydroquinones. The method involves the reaction of a polymeric primary or secondary amine with 2,5-dihydroxyhydrocinnamic acid lactone. An optimum polyamine is polyethyleneimine because the amine equivalent weight is low, resulting in a high hydroquinone content on a weight basis, and also because the resulting tertiary amide structure is quite stable to alkali.

Experimental

The 2,5-dihydroxyhydrocinnamic acid lactone was prepared by conventional methods from 2,5-dimethoxybenzaldehyde and malonic acid followed by reduction and simul-